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Abstract. Within the framework of thermofield dynamics, the wavefunctions of the thermalized
displaced number and squeezed number states are given in the coordinate representation.
Furthermore, the time evolution of these wavefunctions is considered by introducing a thermal
coordinate representation, and we also calculate the corresponding probability densities, average
values and variances of the position coordinate, some special cases of which are consistent with
results in the literature.

1. Introduction

Displaced number states and squeezed number states are generalizations of coherent states and
squeezed states of a harmonic oscillator, respectively [1]. The coherent state is constructed
by displacing the ground state of the harmonic oscillator [2, 3], and the squeezed state by
first squeezing the ground state and then further displacing it (sometimes, by first displacing
and then squeezing, or by only squeezing) [4]. In these constructions, number states (also
called Fock states in quantum field theory) of the harmonic oscillator taking the place of the
ground state will correspondingly produce the displaced number state and squeezed number
state. Thermalizing the displaced and squeezed number states, one can obtain the thermalized
displaced number state and squeezed number state, which will be discussed in this paper.
Evidently, thermalized coherent and squeezed states are the special cases of thermalized
displaced number and squeezed number states. All the above states are interesting and
important in physics.

As is well known, the coherent state can describe the coherent light, and its over-
completeness gives rise to the coherent-state representation which is very useful in quantum
optics, statistical physics, quantum field theory and particle physics, etc [5, 6]. This state
mimics the motion of classical particles, and hence is also used for studying the Schrödinger
cat states [7]. For the squeezed state, not only is it a minimum uncertainty state and similar
to the classical motion, but also the quantum fluctuations in position can be suppressed at
the expense of enhanced fluctuations in momentum [8], which is different from that of the
coherent state. Therefore, the squeezed state has important technological applications in
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quantum computation and sensitive measurement [9]. So far, the squeezed state has received
a great deal of investigation [5, 10]. In the same way, a displaced number state follows the
motion of a classical particle as well as keeping its shape in the course of the motion [1],
and the squeezed number state can display a similar squeezed property to the squeezed state
(equations (38)—(41) in [1]) and hence promises hopeful applications in optical spectroscopy,
communications, molecular and solid state physics [11] (this reference dealt with the squeezed
displaced number state†). Early in the 1950s, the displaced number state and the squeezed
number state were proposed and studied with the help of the coordinate representation [12].
Since then, these states received a few further investigations [13, 14]. Recently, [1] reviewed
these investigations, and gave the most general time-dependent wavefunctions and probability
densities of them in the coordinate representation. Particularly, in view of the experimental
realization of the optical and atomic squeezed (not displaced) states as well as the number
states [9 (1996), 15], Nieto predicted that in the not too distant future, it would be possible to
observe the displaced and squeezed number states [1].

On the other hand, thermal noises must exist somewhere, and thus the influence of the
noises on the above-mentioned states has to be studied. Such an investigation is often realized
by using density matrices and a master equation. However, within the framework of thermofield
dynamics [16], a thermalizing operator acting on the states is also an important and useful way
to introduce finite temperature effects [17,18]. Both the density matrices and the thermofield-
dynamics investigations give rise to a variety of thermal partners of the above-mentioned states,
such as the thermalized coherent, squeezed, displaced number, and squeezed number states,
the displaced thermalized state, squeezed thermalized state, and so on. Many properties of
various thermal coherent and squeezed states have been studied by directly constructing a state
vector [17–19] and other methods, such as characteristic function, density operators, Glauber’s
P-representation of a density operator, etc [14, 20–23] (most of [20, 21] were concerned with
the coherent and squeezed thermalized states). The connections between these thermal states
have been revealed in [18], and Fearn and Collett also gave the physical interpretations of
these states [18]. Besides, for the thermal coherent state, Barnett and Knight discussed the
independence of the Glauber’s P-representation upon the order of displacing and thermalizing
operators [17]. As for the thermalized displaced number and squeezed number states, there
were few investigations of them, and just recently the thermalized squeezed number state (not
displaced, different from the state in this paper) was considered with its characteristic function
for analysing the influence of thermal noise on higher-order squeezing properties of it [24].

This paper will address the wavefunctions and position probability densities of the
thermalized displaced number and squeezed number states (hereafter, two of these states will
also imply that the thermalized coherent and squeezed states are their special cases). This
problem has not, to our knowledge, been discussed in the literature, except for [20 (1993),
22 (1965)] in which the position probability density of coherent thermal state and squeezed
thermal state (not including the number state) was given by Glauber’s R-function and/or
P-representation). However, this problem is certainly interesting and meaningful. The
wavefunctions of the coherent, squeezed, displaced number and squeezed number states contain
all the information about these states and hence describe these states completely. Therefore,
the wavefunctions of the corresponding thermalized non-classical states will give the influence
of finite temperature on the properties described by the zero-temperature wavefunctions, and
can provide, at least, a quantum-mechanical intuitional understanding for us. Moreover, the
coordinate representation of their density operators can be obtained from the finite-temperature
wavefunctions and consequently these wavefunctions can equip a coordinate-representation

† The author thanks the referee for recommending this reference.
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way for calculating the expectation values of all physical observables on the thermalized non-
classical states, which is the most usual way in quantum mechanics. Additionally, the position
density probability can give the probability density of magnetic component of electromagnetic
fields [25, 22 (1965)].

Thermofield dynamics is a unique formalism for finding the wavefunctions for the thermal
non-classical states. In this paper, within the framework of thermofield dynamics, we shall
give wavefunctions of the thermalized displaced number and squeezed number states in terms
of the position coordinate, consider their time evolution, and calculate the position probability
densities. In order to do so, we shall first derive the wavefunction of the thermal vacuum
in the coordinate representation, which was almost given in [8], and introduce a thermal
coordinate representation in the next section. Then the wavefunctions of the thermalized
displaced number and squeezed number states will be given in terms of the position coordinate
in section 3. Section 4 will address the time evolution, the position probability densities, the
position average values and variances of these states. We will give a conclusion at the end of
this paper.

Note that, thermofield dynamics will be not introduced in this paper, however, good
expositions of them can be found in [16]. Besides, although this paper will discuss a harmonic
oscillator with a mass and constant frequency, by taking the mass as a unit one can get results
which are usable for a one-mode electromagnetic field with the same frequency.

2. Thermal vacuum and thermal coordinate representation

In the fixed-time Schr̈odinger picture, for the quantum one-dimensional oscillator

H = 1

2m
p2 +

1

2
mω2x2 =

(
a†a +

1

2

)
h̄ω (1)

the ground state in the coordinate representation is the wavefunction

〈x|0〉 =
(mω
πh̄

)1
4

exp
{
−mω

2h̄
x2
}

(2)

wherep = −ih̄ d
dx ≡ −ih̄∂x ,m is the mass,ω the angular frequency, and

a = 1√
2mh̄ω

(ip +mωx) a† = 1√
2mh̄ω

(−ip +mωx) (3)

are the corresponding annihilation and creation operators, respectively. It is noticed that in [1],
m, ω andh̄ are all used as units. In order to consider thermal effects, thermofield dynamics
introduces a copy of the physical oscillator equation (1) (called the tilde oscillator)

H̃ = 1

2m
p̃2 +

1

2
mω2x̃2 =

(
ã†ã +

1

2

)
h̄ω (4)

according to the tilde ‘conjugation’:̃CO ≡ C∗Õ [16]. Here,C is any coefficient appearing in
expressions of quantities for the physical system,O any operator, the superscript∗ means
complex conjugation, and̃O represents the corresponding operator for the tilde system.
Exploiting the physical and tilde oscillators, one can have the thermal vacuum [16]

|0, β〉 = T (θ)|0, 0̃〉 (5)

where,|0, 0̃〉 = |0〉|0̃〉 is the product of ground states of the physical and tilde oscillators,
β = 1

kbT
with kb the Boltzmann constant andT the temperature, and the unitary transformation

T (θ) (called thermal transformation) is

T (θ) = exp{−θ(β)(aã − a†ã†)} (6)
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with

tanh[θ(β)] = e−βh̄ω/2.

Notice that any physical operator commutes with any tilde operator. Consequently, the thermal-
vacuum average value agrees with canonical ensemble average in statistical mechanics.

It is evident that the thermal vacuum (5) is similar to the two-mode squeezed states
discussed in [8] except for a minus difference between the exponents in equation (6) here
and equation (37) there. Although the wavefunction of the two-mode squeezed state was
given in the coordinate representation [8], here we still derive the position wavefunction of
the thermal vacuum for the sake of both completeness and the establishment of the thermal
coordinate representation. Substituting equation (3) into (6), one can read

T (θ) = exp

{
i
θ

h̄
(xp̃ − x̃p)

}
(7)

with θ ≡ θ(β). From appendix B.4 in [26], the last formula can be untangled as

T (θ) = exp{− tanh(θ)x̃∂x} exp{ln[cosh(θ)](x∂x − x̃∂x̃)} exp{− tanh(θ)x∂x̃}. (8)

Using the following operator properties [27]

eC∂y f (y) = f (y +C) (9)

and

eCy∂y f (y) = f (yeC) (10)

which are proved easily, we obtain the wavefunction of the thermal vacuum as

〈x̃, x|0, β〉 = T (θ)
(mω
πh̄

)1
2

exp
{
−mω

2h̄
(x2 + x̃2)

}
=
(mω
πh̄

)1
2

exp
{
−mω

2h̄
[(x cosh(θ)− x̃ sinh(θ))2 + (x̃ cosh(θ)− x sinh(θ))2]

}
.

(11)

When β → ∞, 〈x̃, x|0, β〉 is reduced to〈x̃, x|0, 0̃〉. This expression (11) can be
generalized to the Gaussian wavefunctional approach for equilibrium field theory in thermofield
dynamics [28].

Such an expression of the thermal vacuum wavefunction equation (11) suggests the
usefulness of introducing a thermal coordinate representation. In thermofield dynamics,
for any operator of the physical or tilde oscillatorQ, its thermal counterpart is defined
asQβ ≡ T (θ)QT †(θ) [16]. In particular, for the fundamental canonical conjugate pairs
{x, p = −ih̄∂x} and{x̃, p̃ = ih̄∂x̃}, the corresponding thermal operators are

xβ ≡ T (θ)xT †(θ) = x cosh(θ)− x̃ sinh(θ)
pβ ≡ T (θ)pT †(θ) = p cosh(θ)− p̃ sinh(θ)

(12)

and

x̃β ≡ T (θ)x̃T †(θ) = x̃ cosh(θ)− x sinh(θ)
p̃β ≡ T (θ)pT †(θ) = p̃ cosh(θ)− p sinh(θ).

(13)

Obviously, the thermal vacuum wavefunction equation (11) can be written as

〈x̃, x|0, β〉 =
(mω
πh̄

) 1
2

exp
{
−mω

2h̄
(x2
β + x̃2

β)
}

(14)

which is the same form with the wavefunction〈x̃, x|0, 0〉. Noticing that the commutators
[xβ, pβ ] = ih̄, [x̃β , p̃β ] = −ih̄ and [Oβ, Õβ ] = 0 hold, one can setpβ ≡ −ih̄ ∂

∂xβ
and
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p̃β ≡ ih̄ ∂
∂x̃β

, and establish a representation for the thermal oscillator, in which any object

(operators, wavefunctions) can be expressed in terms ofxβ , x̃β , ∂
∂xβ

and/or ∂
∂x̃β

. In this paper, we
shall call it thermal coordinate representation. Evidently, this representation is reached through
the unitary thermal transformationT (θ) of the coordinate representation. When working in
the representation, quantities will take similar forms to those in quantum mechanics, and hence
it will simplify our derivation in this paper.

It is suitable here to mention a mathematical property and the physical sense of the thermal
transformation equation (6). It is easily shown that the action ofT (θ) on a function of the
physical and tilde positions{x, x̃} amounts to just the thermal coordinatexβ, x̃β taking the
place ofx, x̃, that is,

T (θ)f (x, x̃) = f (xβ, x̃β). (15)

Thermal transformation is also called the thermalizing operator [18]. It describes the effect of a
thermal reservoir in which a quantum harmonic oscillator immerses. From equation (5), we can
say loosely that a thermalizing operator heats the ground state of a zero-temperature harmonic
oscillator into a thermal vacuum with a finite temperature. In quantum optics, the thermalizing
operator describes the action of a source which excites a one-mode electromagnetic field from
its ground state to a chaotic state (thermalized radiation). Thus, in order to consider thermal
noise, it is enough to perform the action of the thermalizing operator on the non-classical states
mentioned in the last section. Next, we shall address them.

3. Thermalized displaced number and squeezed number state in the coordinate
representation

Because both coherent and squeezed states are constructed with the displacing operator and/or
squeezing operator acting on the ground state, there are three different states with squeezed
effect: squeezed state (only the squeezing operator acting on the ground state), displaced
squeezed state, and squeezed displaced state, which are all usually called squeezed state in the
literature. In this paper, the terminology ‘squeezed state’ means only the displaced squeezed
state, for which the action of the displacing operator follows that of the squeezing operator;
so does the squeezed number state. However, when introducing a finite temperature effect,
one still faces more choices about the orders among displacing, squeezing and thermalizing.
A different order will lead to a different thermal non-classical state [18]. Nevertheless, if
using thermal creation and annihilation operators to work, i.e., as is done in [17,19], one can
escape the order problems with the thermalizing operator. In this section, we shall introduce a
finite temperature effect into the displaced number state and squeezed number state by using
the thermal creation and annihilation operators with the vacuum|0, β〉 [17,19] and then give
their expressions in the coordinate representation. This construction is utterly to thermalize
the displaced number and squeezed number states, namely, it gives the thermalized displaced
number and squeezed number states, as one shall see later.

The thermal annihilation and creation operators with the thermal vacuum equation (5)
are [16]

aβ = T (θ)aT †(θ) a
†
β = T (θ)a†T †(θ) (16)

and

ãβ = T (θ)ãT †(θ) ã
†
β = T (θ)ã†T †(θ). (17)

One can easily check thataβ |0, β〉 = 0, ãβ |0, β〉 = 0 and [aβ, a
†
β ] = [ãβ , ã

†
β ] = 1. With

the aid of thermal creation operatorsa†
β andã†

β , one can construct normalized thermal number
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states

|n,m, β〉 = 1√
n!m!

a
†n
β ã

†m
β |0, β〉 (18)

with the closure relation∑
n,m

|n,m, β〉〈β,m, n| = 1. (19)

The so-called displaced number state|α, n〉 of the oscillator equation (1) is defined in Fock
space as|α, n〉 ≡ D(α)|n〉and can have the following form in the coordinate representation [1]:

〈x|α, n〉 =
(mω
πh̄

)1
4 1√

2nn!
exp{−iα1α2}

× exp

−mω2h̄

(
x −

√
2h̄

mω
α1

)2

+ i

√
2mω

h̄
α2x

Hn
[√

mω

h̄
x −
√

2α1

]
(20)

with α = (α1 + iα2) any complex number,Hn[. . .] the Hermite polynomials and the displacing
operator

D(α) = eαa
†−α∗a. (21)

In this definition, when the number state|n〉 is replaced by the ground state|0〉, the state|α, n〉
is reduced to the usual coherent state|α〉. Evidently, the state|α, n〉 is constructed just with
the displacing operatorD(α) acting on the number state|n〉. Similarly, one can define the
following state|α, n, β〉:

|α, n, β〉 = Dβ(α)D̃β(α)|n, n, β〉 (22)

so as to introduce a finite temperature effect into the displaced number state. Here, the thermal
displacing operatorsDβ(α) andD̃β(α) are

Dβ(α) = exp{αa†
β − α∗aβ} (23)

D̃β(α) = exp{α̃ã†
β − α̃∗ãβ} (24)

respectively, which are generalizations of the displacing operator,D(α). Note thatα̃ = α∗ in
this paper (of course, one can takeα̃ as another parameter independent ofα). Whenn = 0, the
state|α, n, β〉 is just equation (11) withγ = α in Mann and Revzen [19] and equation (3.1)
with ϕ = α in [17]. Employing the definitions (5), (16)–(18), we obtain

|α, n, β〉 = T (θ)|α, n〉|α̃, n〉. (25)

This equation indicates that the state|α, n, β〉 is just the thermalized displaced number state.
In the last equation,|α̃, n〉 is the tilde displaced number state and can be obtained from
equation (20) according to the tilde rules. Whenn = 0, the state|α, 0, β〉 is the thermalized
coherent state, being similar to equation (3.3) in [17]. Employing equations (15), (12) and
(13), one can have

〈x̃, x|α, n, β〉 =
(mω
πh̄

)1
2 1

2nn!
exp

{
− mω

2h̄

[(
xβ −

√
2h̄

mω
α1

)2

+

(
x̃β −

√
2h̄

mω
α1

)2]
+i

√
2mω

h̄
α2(xβ − x̃β)

}
Hn

[√
mω

h̄
xβ −

√
2α1

]
Hn

[√
mω

h̄
x̃β −

√
2α1

]
(26)

=
(mω
πh̄

)1
2 1

2nn!
exp

{
− mω

2h̄

[(
x cosh(θ)− x̃ sinh(θ)−

√
2h̄

mω
α1

)2
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+

(
x̃ cosh(θ)− x sinh(θ)−

√
2h̄

mω
α1

)2]
+i

√
2mω

h̄
α2(cosh(θ) + sinh(θ))(x − x̃)

}
×Hn

[√
mω

h̄
(x cosh(θ)− x̃ sinh(θ))−

√
2α1

]
×Hn

[√
mω

h̄
(x̃ cosh(θ)− x sinh(θ))−

√
2α1

]
. (27)

The rhs of equation (26) is the wavefunction of the thermalized displaced number state in the
thermal coordinate representation, and equation (27) is just the wavefunction in the coordinate
representation. Whenβ →∞, equation (27) is reduced to a product of thex- andx̃-function,
each factor resembling equation (15) in [1].

Now we are in a position to discuss the thermalized squeezed number state. The squeezed
number state|α, z, n〉 of the oscillator equation (1) is constructed by using the squeezing
operatorS(z) [4]

S(z) = exp{− 1
2(z
∗aa − za†a†)} (28)

which reads

|α, z, n〉 ≡ D(α)S(z)|n〉. (29)

Here,z is any complex constant. Whenn = 0, |α, z,0〉 is the usual squeezed state. From [1],
the wavefunction of|α, z, n〉 in the coordinate representation is (here in terms of our notations)

〈x|α, z, n〉 =
(mω
πh̄

)1
4 (
√
F3)

n

√
F12nn!

exp{−iα1α2}

× exp

−mω2h̄
F2

[
x −

√
2h̄

mω
α1

]2

+ i

√
2mω

h̄
α2x


×Hn

[√
mω

h̄
(F4)

−1

(
x −

√
2h̄

mω
α1

)]
(30)

with z = z1 + iz2 = reiφ , S = cosh(r) + z1 sinh(r)/r and κ = z2 sinh(r)/(2rS). In
equation (30), for the convenience of comparison later, we adopted the notationsF in [1],
that is,

F1 = S(1 + i2κ) F2 = 1

S2(1 + i2κ)
− i2κ

F3 = 1− i2κ

1 + i2κ
F4 = S(1 + 4κ2)

1
2 .

(31)

In analogy with the definition of the squeezed number state, we introduce the thermal squeezing
operator

Sβ(z) = exp{− 1
2(z
∗aβaβ − za†

βa
†
β)} S̃β(z) = exp{− 1

2(z̃
∗ãβ ãβ − z̃ã†

β ã
†
β)} (32)

and define the following state|α, z, n, β〉
|α, z, n, β〉 ≡ Dβ(α)D̃β(α)Sβ(z)S̃β(z)|n, n, β〉 (33)

to introduce a finite temperature effect. Note thatz̃ = z∗ in this paper (of course, one can take
z̃ as another parameter independent ofz). It is easily shown that

|α, z, n, β〉 = T (θ)|α, z, n〉|α̃, z̃, n〉 (34)
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with |α̃, z̃, n〉 the tilde version of|α, z, n〉. Evidently, the last equation indicates that the state
|α, z, n, β〉 is just the thermalized displaced number state. Whenn = 0, |α, z,0, β〉 is just the
thermalized squeezed state, being similar to equation (11) in Kireevet al [19]. Employing
equations (15), (30), (12) and (13), we obtain

〈x̃, x|α, z, n, β〉 =
(
mω

πh̄

)1
2 1

|F1|2nn!
exp

{
− mω

2h̄

[
F2

(
xβ −

√
2h̄

mω
α1

)2

+F∗2
(
x̃β −

√
2h̄

mω
α1

)2]
+ i

√
2mω

h̄
α2(xβ − x̃β)

}
×Hn

[√
mω

h̄
(F4)

−1

(
xβ −

√
2h̄

mω
α1

)]
Hn

[√
mω

h̄
(F4)

−1

(
x̃β −

√
2h̄

mω
α1

)]
(35)

=
(
mω

πh̄

)1
2 1

|F1|2nn!
exp

{
− mω

2h̄

[
F2

(
x cosh(θ)− x̃ sinh(θ)−

√
2h̄

mω
α1

)2

+F∗2
(
x̃ cosh(θ)− x sinh(θ)−

√
2h̄

mω
α1

)2]
+i

√
2mω

h̄
α2(cosh(θ) + sinh(θ))(x − x̃)

}
×Hn

[√
mω

h̄
(F4)

−1

(
x cosh(θ)− x̃ sinh(θ)−

√
2h̄

mω
α1

)]
×Hn

[√
mω

h̄
(F4)

−1

(
x̃ cosh(θ)− x sinh(θ)−

√
2h̄

mω
α1

)]
. (36)

The expression (36) is just the wavefunction of the thermalized squeezed number state in
the coordinate representation. Whenβ → ∞, thex-part of equation (36) is consistent with
equation (20) in [1].

In this section, we have constructed the thermalized displaced number and squeezed
number states with the thermal creation and annihilation operators, and given their
wavefunctions. These states are physically meaningful. For a displaced thermalized squeezed
state, Fearn and Collett gave a physical interpretation, namely that it corresponds to the output
from a linear photon amplifier whose input is a squeezed state if the amplifier’s added noise
is regarded as thermal photons [18]. Thus, according to this interpretation, it is not difficult
to give physical interpretations for the states in this paper: thermalized displaced number
and squeezed number states. For instance, the thermalized displaced number state should
correspond, at least theoretically, to the output from a thermal source who excites the previous
output from a linear photon amplifier with a number state being the input, if no thermal noises
accompany the amplifier and the thermal source can excite an electromagnetic field from its
ground state to a thermal chaotic state. Of course, strictly speaking, it is impossible to have
no thermal noises, and so one should consider a type of completely thermalized state in which
both the displacing and the squeezing are companied by thermal noises. We shall discuss the
more practical situations in a separate paper. Next, we shall discuss the time evolution of the
two thermalized non-classical states.
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4. Time evolution of the thermalized non-classical states

In this section, we first consider the time evolution of the thermalized displaced number and
squeezed number states and then calculate their position probability densities.

In thermofield dynamics, Hamiltonian̂H of the combined system of the physical and tilde
oscillators is [16]

Ĥ = H − H̃ = (a†a − ã†ã)h̄ω = (a†
βaβ − ã†

β ãβ)h̄ω. (37)

Hence the time-evolution operator of the combined system is [16]

U(t) = exp

{
− i

h̄
Ĥ t

}
= exp{−iωta†

βaβ} exp{iωtã†
β ãβ)} (38)

with time t . From equations (3), (16) and (17), we have

aβ = 1√
2mh̄ω

(ipβ +mωxβ) a
†
β =

1√
2mh̄ω

(−ipβ +mωxβ) (39)

and

ãβ = 1√
2mh̄ω

(−ip̃β +mωx̃β) ã
†
β =

1√
2mh̄ω

(ip̃β +mωx̃β). (40)

Thus, in the thermal coordinate representation, the time-evolution operator can be untangled
as

U(t) = 1

cos(ωt)
exp

{
−i
mω

2h̄
tan(ωt)x2

β

}
exp

{
− log(cos(ωt))xβ

∂

∂xβ

}
× exp

{
i
h̄

2mω
tan(ωt)

∂2

∂x2
β

}
exp

{
i
mω

2h̄
tan(ωt)x̃2

β

}
× exp

{
− log(cos(ωt))x̃β

∂

∂x̃β

}
exp

{
−i

h̄

2mω
tan(ωt)

∂2

∂x̃2
β

}
. (41)

The operatorU(t) acting on a wavefunction will yield the time evolution of the wavefunction.
With the help of equations (9) and (10) and the following operator property [27]:

exp{C∂2
y }f (y) =

1√
4πC

∫ ∞
−∞

exp

{
− (w − y)

2

4C

}
f (w) dw (42)

which can be shown by using the identity

eCQ
2 = 1√

2π

∫ ∞
−∞

e−σ
2/2eσ

√
2CQ dσ

we can perform the action ofU(t) on various thermalized non-classical states here.
Letting U(t) equation (41) act on the wavefunction equation (14), one can find that

the wavefunction equation (14) is invariant and hence the wavefunction of the thermal
vacuum is independent of time, i.e.,〈x̃, x|0, β, t〉 ≡ U(t)〈x̃, x|0, β〉 = 〈x̃, x|0, β〉. This
is understandable because the average value of any physical observable on the thermal vacuum
is equal to its ensemble average value, which does not vary with time.

U(t) equation (41) acting on equation (26) gives the time-dependent wavefunction of the
thermalized displaced number state〈x̃, x|α, n, β, t〉 ≡ U(t)〈x̃, x|α, n, β〉 as

〈x̃, x|α, n, β, t〉 =
(mω
πh̄

)1
2 1

2nn!
exp

{(
α2

A
+
α∗2

A∗

)
cos(ωt)− 2α2

1

}
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× exp

−mω2h̄

(xβ −√ 2h̄

mω

α

A

)2

+

(
x̃β −

√
2h̄

mω

α∗

A∗

)2


×Hn
[√

mω

h̄
xβ −

√
2(α1 cos(ωt) + α2 sin(ωt))

]
×Hn

[√
mω

h̄
x̃β −

√
2(α1 cos(ωt) + α2 sin(ωt))

]
(43)

withA = cos(ωt)+ i sin(ωt). In finishing the relevant integral with a Hermite polynomial, we
used formula 7.374 (8) in [29]. Equation (43) indicates that the wavefunction of the thermalized
displaced number state is dependent upon time.

Similarly, U(t) equation (41) acting on equation (35) yields the time-dependent wave-
function of the thermalized squeezed number state〈x̃, x|α, z, n, β, t〉 ≡ U(t)〈x̃, x|α, z, n, β〉
as

〈x̃, x|α, z, n, β, t〉 =
(mω
πh̄

)1
2 1

|F1|2nn!|B|
× exp

{
−F2 cos(ωt)α2

1 + 2F2 sin(ωt)α1α2 + i sin(ωt)α2
2

B

}
× exp

{
−F

∗
2 cos(ωt)α2

1 + 2F∗2 sin(ωt)α1α2 − i sin(ωt)α2
2

B∗

}
× exp

{
−mω

2h̄

F2 cos(ωt) + i sin(ωt)

B
x2
β + 2

√
mω

2h̄

F2α1 + iα2

B
xβ

}
× exp

{
−mω

2h̄

F∗2 cos(ωt)− i sin(ωt)

B∗
x̃2
β + 2

√
mω

2h̄

F∗2α1− iα2

B∗
x̃β

}
×Hn

[√
mω

h̄
(F4|B|)−1

(
xβ −

√
2h̄

mω
(cos(ωt)α1 + sin(ωt)α2)

)]

×Hn
[√

mω

h̄
(F4|B|)−1

(
x̃β −

√
2h̄

mω
(cos(ωt)α1 + sin(ωt)α2)

)]
(44)

withB = cos(ωt)+iF2 sin(ωt). Like the thermalized displaced number state, the wavefunction
of the thermalized squeezed number state is also time dependent. Substituting equations (12)
and (13) into (43) and (44), one can obtain the time-dependent wavefunctions of the thermalized
displaced number and squeezed number states in the coordinate representation. Whenβ →∞,
thex-part of equation (44) is consistent with equation (45) in [1], except for the lack of an
imaginary exponent, which is cancelled by the relevant exponent from the tilde system (in
equation (46) of [1] there should be the symbol ‘=’ between the parentheses and the fraction).
Additionally, for the case ofβ →∞, thex-part of equation (43) is consistent with the zero-z

resultant of equation (45) in [1] (except for the lack of an imaginary exponent).
Equations (43) and (44) indicate that the wavefunctions of both the thermalized displaced

number state and the thermalized squeezed number state are dependent upon time, which is
different from the thermal vacuum wavefunction. This point is because both the thermalized
displaced number state and the thermalized squeezed number state are not eigenstates of the
HamiltonianĤ , while the thermal vacuum is an eigenstate of the HamiltonianĤ with zero
eigenvalue.

Now we can calculate the position probability densities. The probability density is the
modulus square of the position-coordinate wavefunction with the tilde coordinate integrated.
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First, we consider the thermal vacuum. The density is easy to calcuate and the result is

ρv(x, t) ≡
∫ ∞
−∞
〈t, β,0|x, x̃〉〈x̃, x|0, β, t〉 dx̃ =

∫ ∞
−∞
〈β, 0|x, x̃〉〈x̃, x|0, β〉 dx̃

=
√
mω

πh̄
tanh

1
2

(
βh̄ω

2

)
exp

{
−mω
h̄

tanh

(
βh̄ω

2

)
x2

}
. (45)

This is just the familiar result in statistical mechanics.
Secondly, we calculate the position probability density of the thermalized displaced

number state

ρc(x, t) ≡
∫ ∞
−∞
〈t, β, n, α|x, x̃〉〈x̃, x|α, n, β, t〉 dx̃. (46)

Substituting equations (12), (13) and (43) into equation (46) and reducing it, we have

ρc(x, t) = mω

πh̄

(
1

2nn!

)2 ∫ ∞
−∞

exp{−(a1x̃ + a2)
2 − (b1x̃ + b2)

2}(Hn[a1x̃ + a2])2

×(Hn[−b1x̃ − b2])2 dx̃ (47)

where,

a1 =
√
mω

h̄
cosh(θ) a2 = −

√
mω

h̄
x sinh(θ)−

√
2(α1 cos(ωt) + α2 sin(ωt))

b1 =
√
mω

h̄
sinh(θ) b2 = −

√
mω

h̄
x cosh(θ) +

√
2(α1 cos(ωt) + α2 sin(ωt)).

With the help of the formula on p 225 of [30]

Hm[x]Hn[x] =
min{m,n}∑
r=0

2r r!CrmC
r
nHm+n−2r [x] (48)

with Crn andCrm being combinations, equation (47) can be written as

ρc(x, t) = mω

πh̄a1

(
1

2nn!

)2 n∑
j,k=0

2j+kj !k!(CjnC
k
n)

2
∫ ∞
−∞

× exp{−y2 − (ay + b)2}H2n−2j [y]H2n−2k[ay + b] dy (49)

with a = b1
a1

andb = −aa2 + b2. Using repeatedly the formula

e−x
2
Hn[x] = − d

dx
{e−x2

Hn−1[x]}
and then formula 7.374 (8) in [29], one can obtain

ρc(x, t) = mω

πh̄a1

(
1

2nn!

)2√
π

a2 + 1
exp

{
− b2

a2 + 1

}
×

n∑
j,k=0

2j+kj !k!(CjnC
k
n)

2a2(n−j)(a2 + 1)j+k−2nH2(2n−j−k)

[
b√
a2 + 1

]
(50)

=
√
mω

πh̄

(
1

2nn!

)2

tanh
1
2

(
βh̄ω

2

)
× exp

{
−
[√

mω

h̄
tanh

(
βh̄ω

2

)
x −
√

2(α1 cos(ωt) + α2 sin(ωt))
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×
√

1 + sech

(
βh̄ω

2

)]2}
×

n∑
j,k=0

22(j+k)−2nj !k!(CjnC
k
n)

2 exp

{
1

2
(j − k)h̄ωβ

}(
cosh

(
βh̄ω

2

))j+k−2n

×H2(2n−j−k)

[√
mω

h̄
tanh

(
βh̄ω

2

)
x −
√

2(α1 cos(ωt) + α2 sin(ωt))

×
√

1 + sech

(
βh̄ω

2

)]
. (51)

As for the thermalized squeezed number state, the calculation of the position probability
density is completely similar to that of the thermalized displaced number state. Finishing
calculations similar to the above, one can find the position probability density of the thermalized
squeezed number state equation (44)

ρs(x, t) ≡
∫ ∞
−∞
〈x̃, x|α, z, n, β, t〉〈t, β, n, z, α|x, x̃〉 dx̃ (52)

= mωF4|B|
πh̄a1

(
1

2nn!

)2√
π

a2 + 1

(F∗3F3)
n

F∗1F1B∗B
exp

{
− b2

(a2 + 1)F2
4B
∗B

}
×

n∑
j,k=0

2j+kj !k!(CjnC
k
n)

2a2(n−j)(a2 + 1)j+k−2nH2(2n−j−k)

[
b√

a2 + 1F4|B|

]
(53)

=
√
mω

πh̄

(
1

2nn!

)2 1

F4|B| tanh
1
2

(
βh̄ω

2

)
× exp

{
− 1

F2
4B
∗B

[√
mω

h̄
tanh

(
βh̄ω

2

)
x −
√

2(α1 cos(ωt)

+α2 sin(ωt))

√
1 + sech

(
βh̄ω

2

)]2}
×

n∑
j,k=0

22(j+k)−2nj !k!(CjnC
k
n)

2 exp

{
1

2
(j − k)h̄ωβ

}(
cosh

(
βh̄ω

2

))j+k−2n

×H2(2n−j−k)

[
1

F4|B|
(√

mω

h̄
tanh

(
βh̄ω

2

)
x −
√

2(α1 cos(ωt)

+α2 sin(ωt))

√
1 + sech

(
βh̄ω

2

))]
. (54)

Whenβ → ∞, the existence of the factora2(n−j) enforces the summation indexj have a
unique valuen becausea = 0. Thus, employing equation (48), one has
n∑

j,k=0

2j+kj !k!(CjnC
k
n)

2a2(n−j)(a2 + 1)j+k−2nH2(2n−j−k)

[
b√

a2 + 1F4|B|

]

= 2nn!

(
Hn

[
b√

a2 + 1F4|B|

])2
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and hence equation (54) withβ →∞ can give equation (50) in [1]. Meanwhile, the probability
density equation (51) withβ →∞ can also lead to equation (50) withz = 0 in [1].

For a given time, for example,t = 0, one can get the position probability densitiesρc(x)

andρs(x) without considering the time evolution from equations (51) and (54). Contrasting
ρc(x) andρc(x, t), as well asρs(x) andρs(x, t), one can find that only the displacement and
squeeze parameters in the expressions of the densities experience changes with the evolution
of time. That is, for the thermalized displaced number state, the real part of the displacement
parameterα becomesα1 cos(ωt) + iα2 sin(ωt), which is similar to that in [22 (1965)], and
for the thermalized squeezed number state, besides the same change ofα1, the parameterF4

becomesF4|B|.
The expressions of bothρc(x, t) andρs(x, t) are complicated, but one can easily prove

that each of them is normalized, because only the term withj = k = n is not zero when
ρc(x, t) or ρs(x, t) is integrated with respect tox. Furthermore, one can calculate the average
value of the position coordinatex on the thermalized squeezed number state as

〈x〉 ≡
∫ ∞
−∞

xρs(x, t) =
√

coth

(
βh̄ω

4

)√
2h̄

mω
(α1 cos(ωt) + α2 sin(ωt)). (55)

Evidently,〈x〉 is independent ofn and the squeeze parameterz, which is similar to the result
of the squeezed number state [1]. Equation (55) indicates that the average value ofx on any
thermalized squeezed number state follows the motion of a classical harmonic oscillator, and
the amplitude of the oscillation increases with the increase of the temperature. Whenβ →∞,
equation (55) is consistent with equation (36) in [1], and in contrast to equation (36) in [1],

equation (55) has just an additional temperature factor
√

coth( βh̄ω4 ) .
Besides, one also easily obtain the variance ofx on a thermalized squeezed number state

as

(1nx)
2 >≡

∫ ∞
−∞
(x − 〈x〉)2ρs(x, t) = coth

(
βh̄ω

2

)
(2n + 1)

h̄F2
4 |B|2

2mω
. (56)

Whenβ → ∞, (1nx)
2 is consistent with equation (38) in [1]. Whenn = 0, (10x)

2 is
consistent with equation (15a) in Kireev et al [19]. A comparison of equation (56) with
equation (38) in [1] tells us that(1nx)

2 just has an additional temperature factor coth(
βh̄ω

2 ).
Finally, we give two examples ofρs(x, t) to end this section. Forn = 0, we have

ρs(x, t) =
√

1

2π(10x)2
exp

{
− (x − 〈x〉)

2

2(10x)2

}
. (57)

Using the relation between the thermalized squeezed state and squeezed thermalized state in
[18 (1991)], one can find that the last equation witht = 0 is consistent with equation (6.6a)
in [20 (1993)]. Forn = 1, we have

ρs(x, t) =
√

2

π(10x)2
exp

{
− (x − 〈x〉)

2

2(10x)2

{
1

2
sech2

(
βh̄ω

2

)[(
(x − 〈x〉)2
2(10x)2

− 3

2

)2

− 3

2

]
+
(x − 〈x〉)2
2(10x)2

}}
. (58)

From the last equation, we see that by introducing a finite temperature effect, thex-polynomial
factor in the expression ofρs(x, t) is not just the quadratic term of(x − 〈x〉) as equation (52)
in [1], but has an additional quadruplicate term of(x−〈x〉). The appearance of the quadruplicate
term is understandable because thermalizing a non-classical state amounts to doubling the
freedom number of the systems within the framework of thermofield dynamics [16].
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From equation (55) to the last equation, we give some explicit results only about the
thermalized squeezed number state. As for the thermalized displaced number state, taking
z = 0 in equations (55)—(58), one can obtain the corresponding results about them, which
are also consistent with those in the literature.

5. Conclusion

In this paper, we have given the wavefunctions of the thermalized displaced number and
squeezed number states in the coordinate representation. Furthermore, with the help of
the thermal coordinate representation, we obtain the time-dependent expressions of these
wavefunctions. Although the thermal vacuum wavefunction is time independent, but either the
thermalized displaced number state or the thermalized squeezed number state varies with time.
We also give the probability densities, average values and variances of the position coordinate
on these states. Each of the wavefunctions, the time-dependent wavefunctions, the probability
densities, average values or variances here are consistent with those in the literature when the
temperature tends to zero. Settingn = 0 in the expressions of this paper, one can obtain results
of the usual thermalized coherent and squeezed states. Additionally, settingt = 0, one can
obtain the probability densities without considering the time evolution of these states.

In the thermal coordinate representation, the forms of the wavefunctions equations (14),
(26), (35), (43) and (44) resemble their own zero-temperature limits. Of course, this resem-
blance does not exist in the coordinate representation at all, and the probabilty densities are
different from those at the zero-temperature case. From section 4, one has seen that the thermal
coordinate representation greatly simplified the calculations there. Perhaps the thermal coordi-
nate representation would simplify other calculations related to the thermal non-classical states.

Finally, although the thermalized displaced number and squeezed number states are
discussed, the above results of them can easily give the corresponding ones of other similar
states, such as displaced thermalized number state, squeezed thermalized number state, etc,
with a simple parameter transformation [18 (1991), 20 (1993)]. Additionally, no matter how
complicated expressions (51) and (54) are, it is not difficult to compute them numerically for a
given numbern. We believe that once the displaced number state and squeezed number state
are prepared in laboratories some day, the results in this paper will be useful.
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